Editorial Team

Editor-in-Chief

1. Prof. nzw. dr hab. inż. Lech M. Grzesiak, Warsaw University of Technology, Poland

Managing Editors

1. Tole Sutikno, Universitas Ahmad Dahlan, Indonesia
2. Dr. Auzani Jidin, Universiti Teknikal Malaysia Melaka (UTeM), Malaysia

Editors

1. Prof. Dr. Faycal Djeffal, University of Batna, Batna, Algeria
2. Prof. Dr. Geetam Singh Tomar, University of Kent, United Kingdom
3. Prof. Dr. Govindaraj Thangavel, Muthayammal Engineering College, India
4. Prof. Dr. Kewen Zhao, Qiongzhou University, China
5. Prof. Dr. Sayed M. El-Rabaie, Minufiya University, Egypt
6. Prof. Dr. Ir. Sim Kok Swee, Multimedia University, Malaysia
7. Prof. Dr. Tarek Bouktir, Ferhat Abbes University, Setif, Algeria
8. Assoc. Prof. Farrokh Attarzadeh, Ph.D., University of Houston, United States
9. Assoc. Prof. Dr. Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
10. Assoc. Prof. Dr. Wudhichai Assawinchaichote, King Mongkut's University of Technology Thonburi, Thailand
11. Assoc. Prof. Dr. M L Dennis Wong, Swinburne University of Technology Sarawak Campus, Malaysia
12. Assoc. Prof. Dr. Mochammad Facta, Universitas DipoNogoro (UNDIP), Indonesia
13. Dr. Vicente Garcia Diaz, University of Oviedo, Spain
14. Prof. Abdel Ghani Aissaoui, University of Bechar, Algeria, Algeria
15. Dr. Ahmad Saudi Samosir, Universitas Lampung (UNILA), Indonesia
16. Dr. Deris Stiawan, C|EH, C|HFI, Universitas Sriwijaya, Indonesia
17. Dr. Eng Khoirul Anwar, Japan Advanced Institute of Science and Technology, Japan
18. Dr. Junjie Lu, Broadcom Corp., United States
19. Dr. Mokhtar Beldjehem, University of Ottawa, Canada
20. Dr. Munawar A Riyadi, Universiti Teknologi Malaysia, Malaysia
21. Dr. Nidhal Bouaynaya, University of Arkansas at Little Rock, Arkansas, United States
22. Dr. Renjie Huang, Washington State University, United States
23. Dr. Ranjit Kumar Barai, Jadavpur University, India
24. Dr. Shadi A. Alboon, Yarmouk University, Jordan
25. Dr. Vijay H. Mankar, Government Polytechnic of Nagpur, India
26. Dr. Angela Amphawan, Universiti Utara Malaysia, Malaysia
27. Dr. Yin Liu, Symantec Core Research Lab, United States
28. Dr. Yudong Zhang, Columbia University, United States
29. Dr. Zheng Xu, IBM Corporation, United States

ISSN: 2088-8708
Withdrawal of Manuscripts

Authors are not allowed to withdraw submitted manuscripts, because the withdrawals are a waste of valuable resources that editors and referees spent a great deal of time processing submitted manuscripts, money and efforts invested by the publisher.

If authors still request withdrawal of their manuscripts when the manuscripts are still in the peer-reviewing process, authors will be punished with paying $200 per manuscript, as withdrawal penalty to the publisher. However, it is unethical to withdraw a submitted manuscript from one journal if accepted by another journal. The withdrawal of manuscripts after the manuscripts are accepted for publication, author will be punished by paying US$500 per manuscript. Withdrawal of manuscripts are only allowed after withdrawal penalty has been fully paid to the Publisher.

If author don't agree to pay the penalty, the authors and their affiliations will be blacklisted for publication in this journal. Even, their previously published articles will be removed from our online system.

ISSN: 2088-8708
Table of Contents

Fault Location Effect on Short-Circuit Calculations of a TCVR Compensated Line in Algeria
Mohamed Zellagui, Heba Ahmed Hassan, Abdelaziz Chaghi 1-12

Experimental Dielectric Measurements for Cost-fewer Polyvinyl Chloride Nanocomposites
Ahmed Thabet, Youssef Mobarak 13-22

Dynamic Response of Two-Electrode Distributed Feedback Laser for Stable Signal Mode Operation
Hamza Bousseta, A. Zatni, A. Amghar, A. Moumen, A. Elyamani 23-30

Asymmetric coplanar F-strip fed antenna with DGS for WiMAX / WLAN applications
Ansal Kalikuzhackal Abbas, Thangavelu Shanmuganatham 31-37

Static Characterization of the Birefringence Effect in the Semiconductor Optical Amplifier Using the Finite Difference Method
A. Elyamani, A. Zatni, H. Bousseta, A. Moumen 38-45

A Robotic Assistance Machine Vision Technique for An Effective Inspection and Analysis
Santosh Kumar Sahoo, B. B. Choudhury 46-54

An Improved Design of Linear Congruential Generator based on Wordlengths Reduction Technique into FPGA
Hubbul Walidainy, Zulfikar Zulfikar 55-63

Classification of ECG signal during Atrial Fibrillation using Burg’s method
Kora Padmavathi, K.Sri Ramakrishna 64-70

Low bit Rate Video Quality Analysis Using NRDPF-VQA Algorithm
Subrahmanyam CH, Venkata Rao D, Usha Rani N 71-77

Feature Selection of the Combination of Porous Trabecular with Anthropometric Features for Osteoporosis Screening
Enny Itje Sela, Sri Hartati, Agus Harjoko, Retantyo Wardoyo, Munakhir Mudjosemedi 78-83

IQ Classification via Brainwave Features: Review on Artificial Intelligence Techniques
Aisyah Hartini Jahidin, Mohd Nasir Taib, Nooritawati Md Tahir, Megat Syahirul Amin Megat Ali 84-91

Left and Right Hand Movements EEG Signals Classification Using Wavelet Transform and Probabilistic Neural Network
A. B. M. Aowlad Hossain, Md. Wasiur Rahman, Manjurul Ahsan Riheen 92-101
Robust Control of the Unified Chaotic System
Hatem Trabelsi, Mohamed Benrejeb

102-110

A Universal Formula for Asymptotic Stabilization with Bounded Controls
Muhammad Nizam Kamarudin, Abdul Rashid Husain, Mohamad Noh Ahmad, Zaharuddin Mohamed

111-118

Performance Analysis of Transmit Antenna Selection with MRC in MIMO for Image Transmission in Multipath Fading Channels Using Simulink
Vaibhav S Hendre, M Murugan, Sneha Kamthe

119-128

Decision Support System for the Selection of Courses in the Higher Education using the Method of Elimination Et Choix Tranduit La Realite
Made Sudarma, Anak Agung Kompiang Oka Sudana, Irwansyah Cahya

129-135

Mitigation of Insider Attacks through Multi-Cloud
T Gunasekhar, K Thirupathi Rao, V Krishna Reddy, P Sai Kiran, B Thirumala Rao

136-141

Location-Based Augmented Reality Information for Bus Route Planning System
Komang Candra Brata, Deron Liang, Sholeh Hadi Pramono

142-149

Software Development of Automatic Data Collector for Bus Route Planning System
Adam Hendra Brata, Deron Liang, Sholeh Hadi Pramono

150-157

Research Issues and Challenges of Big Data

158-165

Impact of Harmonics on Power Quality and Losses in Power Distribution Systems
M. Jawad Ghorbani, Hossein Mokhtari

166-174

This work is licensed under a Creative Commons Attribution 3.0 License.

ISSN: 2088-8708
Decision Support System for the Selection of Courses in the Higher Education using the Method of Elimination Et Choix Tranduit La Realite

Made Sudarma¹, Anak Agung Kompiang Oka Sudana², Irwansyah Cahya³
¹,³Department of Electrical Engineering, Computer System and Informatics, Udayana University, Indonesia
²Department of Information Technology, Udayana University, Indonesia

ABSTRACT
Each year thousands of prospective students attend new student enrollment in universities, which each prospective student have determined the courses that wish to be studied in college. Most of prospective student choose the courses only based on the number of enthusiasts and wishes of parents, and are not based on their academic ability. The impact of this phenomenon is that many of the prospective students chosen to switch courses and not a few of them have been punished dropout. This problem can be solved through the creation of decision support system that has an ability to suggest suitable courses to be selected by the prospective student based on their academic ability. This decision support system solved the problem using the method of elimination et choix tranduit la realite which is presented in web-based application to raise the accessibility by the prospective student.

Keyword: Courses, Decision Support System, ELECTRE Method, Web-based Application

1. INTRODUCTION
The election of courses at the college level is the most important stages for a prospective student, which all of them must determine the scientific field that wanted to be learned or the courses that correlates with the profession to be achieved. Every year thousands of prospective student attend new student enrollment in universities, which each of prospective student have determined the courses that wish to be studied in college. However most of prospective student choose the courses only based on the number of enthusiasts and wishes of parents, and are not based on their own academic ability. The impact of this phenomenon is that many of the prospective students chosen to switch courses and not a few of them have been punished dropout. This problem can be solved through the creation of decision support system that has an ability to suggest suitable courses to be selected by the prospective student based on their academic ability.

Decision support system is an information system at the management level of an organization that combines data and sophisticated analytical models to support decision-making in condition of semi-structured and unstructured. Decision support system can be interpreted as a model-based system consisting of procedures in processing the data and the results of the data processing is used to assist managers in making decisions. This model-based system should be simple, robust, easily controlled, adaptable, easily communicated and implicitly also means the system must be based computer so that system can fulfill its purpose [8]-[11].

The decision support system solved the courses election problem using the Method of Elimination Et Choix Traduit La Realite or known as Method of ELECTRE. The basic concept of ELECTRE method is to handle the outranking relationship using pairwise comparisons between the one alternative with the other alternatives on each criterion separately [1], [2], [10]. The Outranking relations of A_i and A_j explained that when the i-th alternative didn’t dominate the j-th alternative quantitatively, then the decision maker still can take the risk by choosing A_i because A_i is almost better than A_j. The alternative is said to be dominated if there is another alternative that outperform them in one or more of the same attributes and in the remaining attributes.

The Decision maker is asked to assign preference weights or important factor of criteria to reveal the relative importance of these criteria [4]. A series of assessment process carried out in a row against the outranking relations of alternatives. Concordance is defined as the set of some evidence to support the conclusion that A_k outperform or dominate A_i. The set of Discordance is defined as the amount of evidence to support the conclusion that A_k is worse than A_i [5], [7]. This method has a clearer view about the alternative is to eliminate alternatives that are less favorable, when facing multiple criteria with a number of alternatives in the case of decision making [3].

2. RESEARCH METHOD

This decision support system is deliberately designed to be able to provide a solution in determining the choice of courses in Higher Education. This application designed using PHP programming language and HTML, which is integrated with several other programming languages such as JavaScript, JQuery and CSS.

2.1. System Concept

The use of this decision support system for the selection of courses begins with the login process. Prospective student who successfully perform the login process can start the decision making of the selection of courses, by providing input data in the form of academic ability and economic ability of the prospective student itself. The academic ability is comprised of the value of student report cards from grade 1 in 1st semester to grade 3 in 2nd semester, when the prospective student were at high school level [6].

The input data is converted into a weight value in accordance with the system provisions and put in the input database, complete with id_user belongs users who have given the input data. The weight value of input data that already exist in the input database passed to the process of variable initialization simultaneously with the data of alternative weight taken from the courses database. All data that has been initialized is forwarded to the calculation process of decision-making using the ELECTRE method [1]. The result of the calculation process of decision-making is a suggestion in the form of courses that suitable to be selected by the user, which has been sorted by the system based on the acquisition of the dominance value of each courses [9].

2.2. Research Phases

This research was conducted through several stages, as follows:

1. Determination of problems or cases that examined in this study and limitations of the problem itself.
2. The collection of data which is related to the issues. The data collection was done by means of a literature study.
3. Designing the system in accordance with the problems studied and the data obtained, as well as implement the ELECTRE method to the system are made.
4. Connecting the interface of system with a database that has been created.
5. Conduct testing to the system that has been designed and created.
6. Performing an analysis on the results of the testing system.
7. Making conclusions.
8. Preparation of reports based on the stages of the research that has been done.

3. RESULTS AND ANALYSIS

The purpose of tests performed on applications of decision support system for the selection of courses is to determine the effectiveness and performance of application that have been created. The test will provide a conclusion on how effective the method could solve the problems and how well the performance implemented.
3.1. Test the Accuracy of the Calculation Results

Testing the accuracy of the calculation can be done through the completion of a case, which is as follows.

The prospective student namely “user” making a selection of courses using this decision support system application, where the user input (value of report cards) are as follows.

1. Average value of Indonesia Language: 80
2. Average value of English: 90
3. Average value of mathematics: 70
4. Average value of Indonesian Literature: 90
5. Average value of Foreign Language: 70
6. Average value of Anthropology: 70
7. Average value of Computer Science: 75
8. Economic capacity per 1 semester: IDR 3.000.000,00

Completion of the above cases using manual calculation of ELECTRE method is as follows.

Alternative matrix (Matrix X) is:

<table>
<thead>
<tr>
<th>Alternative (Courses)</th>
<th>Weight value of each criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesian Literature</td>
<td>5 2 2 5 3 2 3 1</td>
</tr>
<tr>
<td>Ancient Javanese Literature</td>
<td>4 2 2 3 3 2 1</td>
</tr>
<tr>
<td>Literature of Bali</td>
<td>4 2 2 4 3 4 3 1</td>
</tr>
<tr>
<td>English Literature</td>
<td>4 5 2 2 4 2 3 2</td>
</tr>
<tr>
<td>Japanese Literature</td>
<td>3 5 2 2 5 3 2 2</td>
</tr>
<tr>
<td>Archeology</td>
<td>2 3 4 2 3 5 4 1</td>
</tr>
<tr>
<td>Cultural Anthropology</td>
<td>2 3 2 4 5 3 3 1</td>
</tr>
<tr>
<td>History</td>
<td>3 3 2 2 4 3 1</td>
</tr>
</tbody>
</table>

Table 1. Alternative Matrix

Where the representation of the weight value is:
- 5= very good value
- 4= good value
- 3= enough value
- 2= bad value
- 1= very bad value

The input data from user (value of report cards) converted into a preference weight based on the following conditions.
- If the value is in the range 85 to 100, then the weight of preference is 5.
- If the value is in the range 80 to 84, then the weight of preference is 4.
- If the value is in the range 75 to 79, then the weight of preference is 3.
- If the value is in the range 65 to 74, then the weight of preference is 2.
- If the value is in the range 10 to 64, then the weight of preference is 1.

The economic ability per 1 semester of user is also converted into a preference weight based on the following conditions.
- If the value is in the range Rp.4.200.000,00 to Rp.20.000.000,00 then the weight of preference is 5.
- If the value is in the range Rp.3.100.000,00 to Rp.4.100.000,00 then the weight of preference is 4.
- If the value is in the range Rp.2.600.000,00 to Rp.3.000.000,00 then the weight of preference is 3.
- If the value is in the range Rp.2.100.000,00 to Rp.2.500.000,00 then the weight of preference is 2.
- If the value is in the range Rp.1.000.000,00 to Rp.2.000.000,00 then the weight of preference is 1.

Table 2. Preference weight

<table>
<thead>
<tr>
<th>Input data from user</th>
<th>Preference weights (interest rate of criterion)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
<tr>
<td>Criteria</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4 5 2 5 2 2 3 3</td>
</tr>
</tbody>
</table>

Where the representation of the preference weight is:
- 5= very important

Decision Support System for the Selection of Courses in the Higher Education using the … (Made Sudarma)
4 = important
3 = quite important
2 = not important
1 = very unimportant

Phase 1. Determination of the normalized matrix.

\[r_{ij} = \frac{x_{ij}}{\sum_{k=1}^{n} x_{kj}} \text{ untuk } i=1,2,3,\ldots,m \text{ dan } j=1,2,3,\ldots,n \]

The calculation is:

\[
x_1 = \sqrt{5^2 + 4^2 + 2^2 + 2^2 + 2^2 + 2^2} = \sqrt{92} = 9,5917
\]

\[
r_{11} = \frac{x_{11}}{|x_1|} = \frac{5}{9,5917} = 0,5213
\]

\[
r_{21} = \frac{x_{21}}{|x_1|} = \frac{4}{9,5917} = 0,4171
\]

\[
r_{31} = \frac{x_{31}}{|x_1|} = \frac{3}{9,5917} = 0,3127
\]

\[
r_{41} = \frac{x_{41}}{|x_1|} = \frac{3}{9,5917} = 0,3127
\]

Calculations performed in the same way so as to obtain the following results:

\[
\begin{array}{ccccccc}
0,5213 & 0,2341 & 0,3015 & 0,5976 & 0,3046 & 0,1924 & 0,3612 \\
0,4171 & 0,2341 & 0,3015 & 0,4781 & 0,4812 & 0,4815 & 0,6092 \\
0,4171 & 0,2341 & 0,3015 & 0,2391 & 0,2391 & 0,2391 & 0,2391 \\
0,3127 & 0,5853 & 0,3015 & 0,2391 & 0,5976 & 0,3046 & 0,1924 \\
0,3127 & 0,3512 & 0,3015 & 0,2391 & 0,2391 & 0,2391 & 0,2391 \\
0,2086 & 0,3512 & 0,6031 & 0,2391 & 0,4812 & 0,4815 & 0,6092 \\
0,2086 & 0,3512 & 0,3015 & 0,2391 & 0,4812 & 0,4815 & 0,6092 \\
0,1237 & 0,3512 & 0,3015 & 0,2391 & 0,9203 & 0,3046 & 0,1924 \\
\end{array}
\]

Phase 2. Weighting the normalized matrix.

\[
V = R \cdot W
\]

\[
\begin{bmatrix}
V_{11} & V_{12} & \cdots & V_{1n} \\
V_{21} & V_{22} & \cdots & V_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
V_{m1} & V_{m2} & \cdots & V_{mn}
\end{bmatrix}
\begin{bmatrix}
w_{1}r_{11} & w_{2}r_{12} & \cdots & w_{n}r_{1n} \\
w_{1}r_{21} & w_{2}r_{22} & \cdots & w_{n}r_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
w_{1}r_{m1} & w_{2}r_{m2} & \cdots & w_{n}r_{mn}
\end{bmatrix}
\]

Calculations performed in the same way so as to obtain the following results:

\[
\begin{array}{cccccc}
2,0852 & 1,1705 & 0,603 & 2,9881 & 0,6092 & 0,3848 & 1,0836 & 0,8019 \\
1,6681 & 1,1705 & 0,603 & 1,7952 & 0,6092 & 0,5774 & 0,7221 & 0,8019 \\
1,6681 & 1,1704 & 0,603 & 2,3905 & 0,6092 & 0,7698 & 1,0835 & 0,8018 \\
1,2511 & 2,926 & 0,603 & 1,1952 & 0,8123 & 0,3849 & 0,1035 & 1,6035 \\
1,2511 & 1,7556 & 0,603 & 1,1952 & 0,10153 & 0,5774 & 0,7223 & 1,6035 \\
0,8341 & 1,7556 & 1,2061 & 1,1952 & 0,6092 & 0,9623 & 1,4446 & 0,8018 \\
0,8341 & 1,7556 & 0,603 & 1,1952 & 0,8123 & 0,9623 & 1,0835 & 0,8018 \\
1,2511 & 1,7556 & 0,603 & 1,1952 & 0,4061 & 0,7698 & 1,0835 & 0,8018 \\
\end{array}
\]

Phase 3. Determination of the concordance set using the following conditions:

\[
C_{kl} = \{ j \mid v_{kj} \geq v_{ij} \} \text{ untuk } j = 1,2,3, \ldots, n
\]

The calculation is:

\[
C_{12} = \{ j \mid v_{1j} \geq v_{2j} \} \text{ j=1,2,..8 then obtained } C_{12} = \{1,2,3,4,5,7,8\} \text{ means to meet the conditions in the 1st, 2nd, 3rd, 4th, 5th, 7th dan 8th comparisons.}
\]

\[
C_{13} = \{ j \mid v_{1j} \geq v_{3j} \} \text{ j=1,2,..8 then obtained } C_{13} = \{1,2,3,4,5,7,8\}
\]

\[
C_{14} = \{ j \mid v_{1j} \geq v_{4j} \} \text{ j=1,2,..8 then obtained } C_{14} = \{1,3,4,6,7\}
\]

\[
C_{15} = \{ j \mid v_{1j} \geq v_{5j} \} \text{ j=1,2,..8 then obtained } C_{15} = \{1,3,4,7\}
\]

\[
C_{16} = \{ j \mid v_{1j} \geq v_{6j} \} \text{ j=1,2,..8 then obtained } C_{16} = \{1,4,5,8\}
\]
The calculation is:

Determination of the discordance set using the following conditions:

\[D_{kl} = \{ j, v_{kj} < v_{ij} \} \text{ until } j = 1, 2, 3, \ldots n \]

The calculation continued until all sets of discordance completely obtained.

Phase 4. Calculation of matrix of concordance and discordance.

The calculation is:

\[c_{kl} = \sum_{j \in D_{kl}} w_j \]

Calculations performed in the same way so as to obtain the following results:

\[
\begin{bmatrix}
0 & 24 & 24 & 1614 & 14 & 17 & 19 \\
14 & 0 & 16 & 1316 & 14 & 14 & 16 \\
17 & 26 & 0 & 1616 & 14 & 17 & 21 \\
17 & 15 & 15 & 0 & 22 & 19 & 24 & 24 \\
14 & 17 & 12 & 180 & 19 & 21 & 21 \\
17 & 17 & 17 & 1217 & 0 & 24 & 22 \\
17 & 17 & 17 & 1417 & 21 & 0 & 22 \\
15 & 15 & 15 & 1621 & 17 & 22 & 0 \\
\end{bmatrix}
\]

The matrix of discordance is calculated based on the set of discordance that obtained at phase 3, as follows:

\[d_{kl} = \sum_{j \in D_{kl}} w_j \]

Calculations performed in the same way so as to obtain the following results:

\[
\begin{bmatrix}
0 & 2 & 2 & 1012 & 12 & 9 & 7 \\
12 & 0 & 10 & 1310 & 12 & 12 & 10 \\
9 & 0 & 0 & 1010 & 12 & 9 & 5 \\
9 & 11 & 11 & 0 & 4 & 7 & 2 \\
12 & 9 & 14 & 4 & 0 & 7 & 5 \\
9 & 9 & 9 & 14 & 0 & 2 & 4 \\
9 & 9 & 9 & 12 & 9 & 5 & 0 \\
11 & 11 & 11 & 10 & 5 & 9 & 4 \\
\end{bmatrix}
\]
Phase 5. Determination of the dominance value of concordance and discordance.

Table 3. The dominance value of concordance

<table>
<thead>
<tr>
<th>Courses (alternative)</th>
<th>Calculation of the dominance value of concordance</th>
<th>The dominance value of concordance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesian Literature</td>
<td>0+24+2+16+14+14+17+19</td>
<td>128</td>
</tr>
<tr>
<td>Ancient Javanese Literature</td>
<td>14+0+16+13+16+14+14+16</td>
<td>103</td>
</tr>
<tr>
<td>Literature of Bali</td>
<td>17+26+0+16+14+17+19</td>
<td>127</td>
</tr>
<tr>
<td>English Literature</td>
<td>17+15+15+0+22+19+24+24</td>
<td>136</td>
</tr>
<tr>
<td>Japanese Literature</td>
<td>14+17+12+18+0+19+21+21</td>
<td>122</td>
</tr>
<tr>
<td>Archeology</td>
<td>17+17+17+12+17+0+24+22</td>
<td>126</td>
</tr>
<tr>
<td>Cultural Anthropology</td>
<td>17+17+17+14+17+21+0+22</td>
<td>125</td>
</tr>
<tr>
<td>History</td>
<td>15+15+15+16+21+17+22+0</td>
<td>121</td>
</tr>
</tbody>
</table>

The calculation of the dominance value of discordance is as follows:

Table 4. The dominance value of discordance

<table>
<thead>
<tr>
<th>Courses (alternative)</th>
<th>Calculation of the dominance value of discordance</th>
<th>The dominance value of discordance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesian Literature</td>
<td>0+2+2+10+12+12+9+7</td>
<td>54</td>
</tr>
<tr>
<td>Ancient Javanese Literature</td>
<td>12+0+10+13+10+12+12+10</td>
<td>79</td>
</tr>
<tr>
<td>Literature of Bali</td>
<td>9+0+10+10+12+9+5</td>
<td>55</td>
</tr>
<tr>
<td>English Literature</td>
<td>9+11+11+0+4+7+2+2</td>
<td>46</td>
</tr>
<tr>
<td>Japanese Literature</td>
<td>12+9+14+8+0+7+5+5</td>
<td>60</td>
</tr>
<tr>
<td>Archeology</td>
<td>9+9+9+9+14+9+0+2+4</td>
<td>56</td>
</tr>
<tr>
<td>Cultural Anthropology</td>
<td>9+9+9+12+9+5+0+4</td>
<td>57</td>
</tr>
<tr>
<td>History</td>
<td>11+11+11+10+5+9+4+0</td>
<td>61</td>
</tr>
</tbody>
</table>

Phase 6. The final dominance is the result of a reduction in the dominance between the concordance and discordance value of an alternative.

Table 5. The result of the manual calculation

<table>
<thead>
<tr>
<th>Courses (alternative)</th>
<th>The value of the final dominance</th>
<th>Ranked based on the value of the final dominance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesian Literature</td>
<td>74</td>
<td>2</td>
</tr>
<tr>
<td>Ancient Javanese Literature</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>Literature of Bali</td>
<td>72</td>
<td>3</td>
</tr>
<tr>
<td>English Literature</td>
<td>90</td>
<td>1</td>
</tr>
<tr>
<td>Japanese Literature</td>
<td>62</td>
<td>6</td>
</tr>
<tr>
<td>Archeology</td>
<td>70</td>
<td>4</td>
</tr>
<tr>
<td>Cultural Anthropology</td>
<td>68</td>
<td>5</td>
</tr>
<tr>
<td>History</td>
<td>60</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 6. Comparisons of the calculation results

<table>
<thead>
<tr>
<th>Courses (alternative)</th>
<th>The value of the final dominance (result of the manual calculation)</th>
<th>The value of the final dominance (result of the calculation of application)</th>
<th>Ranked based on the value of the final dominance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesian Literature</td>
<td>74</td>
<td>74</td>
<td>2</td>
</tr>
<tr>
<td>Ancient Javanese Literature</td>
<td>24</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>Literature of Bali</td>
<td>72</td>
<td>72</td>
<td>3</td>
</tr>
<tr>
<td>English Literature</td>
<td>90</td>
<td>90</td>
<td>1</td>
</tr>
<tr>
<td>Japanese Literature</td>
<td>62</td>
<td>62</td>
<td>6</td>
</tr>
<tr>
<td>Archeology</td>
<td>70</td>
<td>70</td>
<td>4</td>
</tr>
<tr>
<td>Cultural Anthropology</td>
<td>68</td>
<td>68</td>
<td>5</td>
</tr>
<tr>
<td>History</td>
<td>60</td>
<td>60</td>
<td>7</td>
</tr>
</tbody>
</table>

The comparisons result Table 6 shows the calculation process of decision making using applications capable of generating output that has a very good level of accuracy and in accordance with the rules of calculation of ELECTRE method.
4. CONCLUSION

The use of ELECTRE method in the application of decision support system for the selection of courses in college is very effective and relevant. This is because the ELECTRE method is able to process the input data by using a relatively short calculation and is able to generate output data as expected, taking into account the advantages and drawbacks of each alternative (courses). Output data resulting from calculations using ELECTRE method is also presented in the form of rating, making it easier for users to analyze the system output and determine the courses that suitable to be chosen.

ACKNOWLEDGEMENTS

I would like to express my very great appreciation to goes to colleague who has made valuable contributions in this study and their critical comments on this manuscript.

REFERENCES