CONTEMPORARY ENGINEERING SCIENCES

Editorial Board

A. Kh. Bin A'ain (Malaysia) Yalin Lu (USA)
J. Calmet (Germany) R. Manikandan (India)
Xian-An Cao (USA) S. Mochizuki (Japan)
Jie Chen (USA) K. Prasad (New Zealand)
Wen-Chang Chen (Taiwan) P. Rentzepis (USA)
A. Cichocki (Japan) M. Roccetti (Italy)
S. C. Cowin (USA) J. K. Sahu (UK)
F. D'Auria (Italy) F. Shi (USA)
F. Ghassemlooy (UK) C. Sun (Singapore)
A. K. Goel (USA) A. Szeri (USA)
V. Haerle (Germany) R. Talreja (USA)
G. A. Holzapfel (Austria) G. S. Tombras (Greece)
J. Y. Huang (Taiwan) Ge Wang (USA)
T. S. Kalkur (USA) Wei Wu (Austria)
A. K. Katsaggelos (USA) Zhiqiang Wu (USA)
H. S. Kwok (China) F. Yakuphanoglu (Turkey)

Hikari Ltd
Contemporary Engineering Sciences

Aims and scopes: The journal publishes refereed, high quality original research papers in all areas of engineering sciences and related applied sciences.

Call for papers: Authors are cordially invited to submit papers to the editorial office by e-mail to: ces@m-hikari.com. Manuscripts submitted to this journal will be considered for publication with the understanding that the same work has not been published and is not under consideration for publication elsewhere.

Instruction for authors: The manuscript should be prepared using LaTeX or Word processing system, basic font Roman 12pt size. The papers should be in English and typed in frames 14 x 21.6 cm (margins 3.5 cm on left and right and 4 cm on top and bottom) on A4-format white paper or American format paper. On the first page leave 7 cm space on the top for the journal’s headings. The papers must have abstract and keywords. The references should be in alphabetic order and must be organized as follows:

Editorial office

E-mail: ces@m-hikari.com

Postal address:
HIKARI Ltd, P.O. Box 85
Ruse 7000, Bulgaria

Street address:
HIKARI Ltd, Vidin str. 40, office no. 3
Ruse 7012, Bulgaria

www.m-hikari.com

Published by Hikari Ltd
Stefano Sorace, Gloria Terenzi, A viable base isolation strategy for the advanced seismic retrofit of an R/C building 817

Khaled Mahdi, Nadir Bellel, Estimation of steam production in a receiver under solar concentrating radiation 835

Md. Riajun Nur, Md. Assad-Uz-Zaman, Mohammad Mashud, Effect of co-flow jet over an airfoil: numerical approach 845

Kaori Hattori, Yu Okamoto, Chigusa Kominato, Takashi Akitsu, PMMA matrix viscosity dependence of CD bands of flexible chiral Schiff base Ni(II), Cu(II), and Zn(II) complexes 853

A. V. G. Subramanyam, Mohd Zishan, Rajat Roy, Limitations on the computation of electric field in rectangular waveguide based microwave components using modal expansion 861

Maiko Ito, Takashi Akitsu, Polarized UV light induced molecular arrangement depending on flexibility of chiral Schiff Base Ni(II), Cu(II), and Zn(II) complexes by Azobenzene in PMMA matrix 869

Daria Nikiforova, Evgeny Lisin, Wadim Strielkowski, Michal Mirvald, Natalya Odintsova, Innovative potential of hot dry rock geothermal technology 879

Andrey Sheka, Model of control system for mobile robots 889

Andrey Sheka, Wheeled mobile robot Kuzma I 895

Andrey Sheka, Tracked mobile robot Kuzma II 901
I Gusti Ngurah Nitya Santhiarsa, Pratikto, A. A. Sonief, Eko Marsyahyo, Effects of alkali treatment and weight fraction on electrical properties of palm sugar fibre-epoxy

Nissankara Lakshmi Prasanna, Nagalla Sudhakar, K. Sravanthi, Algorithm for vertex anti-magic total labeling on various classes of graphs

R. Manikandan, V. Leela, Effective clustering algorithms for VLSI circuit partitioning problems

Alexander V. Ilyin, Vladimir D. Ilyin, The Interval method of cost planning and its implementation in the online service

V.A. Makovy, A.P. Ermakov, O.V. Chernoyarov, B.I. Shakhtarín, Digital compensation of the analog-digital highway nonlinearity in a case of unknown initial phase of the test signal

P. D. Filio-Aguilar, R. Flores-Carapia, V. M. Silva-Garcia, SSL/TLS record protocol based on the triple DES-96 cryptosystem

Yuki Shoji, Yasushi Itoh, A dual-band reflection type phase shifter using active loads

Alexander K. Rozentsvaig, Cheslav S. Strashinskii, Model of the heat exchange in boiling emulsions with low-boiling disperse phase at the solid wall

Azat Talgatovich Gabdrakhmanov, Irek Husnemardanovich Israphilov, Azat Talgatovich Galiakbarov, Study generator of a cold plasma for sterilization
Effects of Alkali Treatment and Weight Fraction on Electrical Properties of Palm Sugar Fibre-Epoxy Composite

I Gusti Ngurah Nitya Santhiarsa
Mechanical Engineering Department, Brawijaya University, Malang, Indonesia

Pratikto
Mechanical Engineering Department, Brawijaya University, Malang, Indonesia

A. A. Sonief
Mechanical Engineering Department, Brawijaya University, Malang, Indonesia

Eko Marsyahyo
Mechanical Engineering Department, National Institut of Technology Malang, Indonesia

Copyright ©2014 I GN Nitya Santhiarsa, Pratikto, A.A. Sonief and Eko Marsyahyo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Effect of alkali strength on the fiber surface treatment and fiber weight fraction variations on the electrical properties of the composite palm sugar fiber-epoxy become the focus in this study. The results showed that the stronger the base or alkaline pH, then the value of the resistivity of the composites increased is greater while the value of the dielectric constant decreases. The increases in weight fraction of palm sugar fibers in the composite resulted in a decrease in resistivity values and otherwise add to the value of the dielectric constant.

Keywords: sugar palm fiber, alkali treatment, electric properties
Introduction

Physically and chemically, surface treatment leads to reduce lignin and hemicellulose on the fiber surface, which turns out to have an impact on the electrical properties of the fibers. Associated with electrical properties, Paul, A. [6], John, M.J. [3] and George, G. [2], has studied the effect of surface treatment on the electrical properties of natural fibre-polymer or rubber composites. The result shows that chemical treatment increases the resistivity and decreases the value of the dielectric constant and the addition of fiber weight fraction in the composite increases the value of the dielectric constant and otherwise reduces the value resistivity. Further research on the treatment with some other alkali associated with its base strength needs to be done. In this study, three different kinds of alkaline of different grade of base strength are used; NH₄OH/ammonium hydroxide, NaOH /sodium hydroxide and KOH/potassium hydroxide, NaOH(pKb 1) and KOH(pKb 0.5) are grouped into strong base of which KOH is more strongly alkaline while NH₄OH(pKb 4.75) is relatively weak base, to compare the results both qualitatively and quantitatively in their effects on the electrical properties(resistivity and dielectric constant) of natural fibers composites.

Experiment Set-up

Palm sugar fibers obtained from the Gianyar district, Bali. Palm sugar fibers are cleaned and dried, divided into five sections, two sections without treatment and function as a control, one part of which is kept as longer fibers and one part is made into a fine powder and sieved with a 100-mesh sieve, and the next three sections are treated with alkali, i.e., each of which is given treatment of 0.25 M NH₄OH(pH 8.8), 0.25 M NaOH(pH 9.2), and 0.25 M KOH(pH 9.3) respectively. The ratio of the fiber and the solution (weight / volume) is 1: 20. For the treatment, the fiber is soaked for 1 hour at room temperature in an alkaline solution, respectively, after that it was removed and rinsed with distilled water to clean and rinse water is neutral (pH 7), and then it is dried in the room for 4 days. All the fibers are then cut to the length of composite molds available. The process of making composites by molding injection method is a method of making a composite with a closed mold where the palm sugar fiber is placed in a glass mold which wold produce composite size, 250 mm x 200 mm x 3 mm, then the epoxy matrix was inserted into the mold through injection process with a boost air pressure coming from the compressor. The mixture of epoxy resin and hardener was by weight ratio of 1: 1. Having the mold fully filled with epoxy matrix then the injection was stopped. The mold was settling for 24 hours, after the epoxy matrix was dry then the mold is removed. Weight fraction of the fiber used was 30%, 40% and 50%, long fiber with fiber orientation used is parallel to the direction of the axis of the composite. Post curing process can be done by inserting the composite into the oven with a temperature of 60 ° C for 2 hours.
Resistivity test is performed to measure the value of resistance of the composite, square box-sized samples of 25 mm x 25 mm x 3 mm, the specimen was measured by means of an High Resistance Meter electrometer, 6517B. The tests were carried out at a voltage of 0-150 volts and room temperature and it was conducted in Center of Basic Science Laboratory, University of Malang, Malang. Dielectric test is performed to measure the capacity of the composite, with same specimen was measured by Tinsley 6401 LCR Databridge. The tests were conducted at a frequency of 1 kHz and room temperature and it was performed in High Voltage Engineering Laboratory, Faculty of Engineering, Gadjah Mada University, Yogyakarta.

Result and Discussion

![Graph](image-url)
Effect of Alkali Treatment on Resistivity. Variations of resistivity as the alkali treatment function are presented in Fig. 1, which shows that resistivity of composites increased that were subjected to alkaline treatment. Composite resistivity values at 30% weight fraction ranging the smallest to the largest (in Ohm-m) is a composite with fiber without treatment(TP) 7.54771×10^8, NH₄OH treatment 1.13306×10^9, NaOH treatment 3.26653×10^9, powder or particle without treatment(TP-particle)3.80287×10^9, and KOH treatment 4.71572×10^9. As described earlier, alkali treatment can reduce the moisture content of fiber, lowering the hydrophilic nature of the fibers, reduces content of water polar molecules, or reduces the amount of OH⁻ on cellulose which causes an increase in the value of resistivity. The greater the power of base or alkaline pH of the solution then the more OH⁻ group is missing. It was these polar groups that act as conductor of electric current in natural fibers. With the less polar groups in the fibers also consequently diminishes composite specimens ability to deliver performance of electric. For control specimens with particles, the price resistivity is higher compared to the control specimens with fibers, because the whole unity thing is more conductive compared to particle shape, in addition to the lack of fine powder size and uneven distribution causes the presence of voids that increase resistivity.[1] Electrical conductivity properties of solid materials is the ease conductor moving or flowing electrons in the material, electrons flow easily because of the weak interaction force on the atomic nucleus and the presence of the band gap (the energy gap between the valence band to the conduction band) narrow or overlapping The insulation materials similar with the semiconductor, which the difference is in large energy band gap , i.e the distance between the conduction band and valence band, if more than 1 eV including insulating material. In non-conductor materials, have no electrons in the conduction band, and the charge carriers of the current is two, namely electrons and holes, which
holes are positively charged in the valence band, 'hole' created by electrons move to the conduction band. Contribution to the electrical flow of electrons is greater than the hole. The conductivity of semiconductor or insulation material is proportional to the concentration of the charge and mobility of electrons and holes, the higher the concentration and mobility of the charge, the greater the electrical current is delivered. Then, the electrical transport characteristics of the material is directly influenced by the mechanism of disruption to the movement of charge carriers in the material. Disorder usually occurs as a result of various types of scattering mechanisms that is the scattering lattice (lattice atoms) and the scattering of impurities. Increasing the field strength after breakdown voltages lead to lattice atoms oscillate so that an increase in the probability of a collision which then lead to decreased mobility of the electrons. The more collisions, or scattering non-coherent, the more electrons lose energy, in qualitatively, the energy loss is resistance. [4] Value of electricity currents remains the same due to the frictional forces arising from the collision of free electrons with both scattering mechanisms that inhibit the acceleration of free electrons so that the electron velocity becomes constant, thus the current flowing fixed in the non-ohmic region. In the non-ohmic region, because of the constant current, when the voltage increases, for the material with greater resistivity, it also has greater resistivity improvement. (See figure 1). The boundary between ohms regions and non-ohmic is characterized by breakdown voltage, in this case the average breakdown voltage of composite is 110-120 volts.

![Figure 2 Effect of Alkali and Weight Fraction on Dielectric Constants](image)

Effect of Alkali Treatment on the Dielectric Constant. Dielectric properties of a composite depend on the polarizing ability of its constituent components, namely the matrix and reinforcement, where there are four mechanisms of polarization, interface, dipole, atomic, and electronic.[2] Composite materials are heterogeneous so interface polarizations therefore have considerable influence over the high dielectric properties at low frequencies.
Interface polarization occurs when charge carriers, especially in the lignocellulose fiber-based composites, dipole is trapped at the interface zone of heterogeneous systems. This trapped dipole can be oriented to a certain extent in an external field (electromagnetic) and thus contribute to the polarization of the material. The presence of polar groups in natural fibers (OH- groups in cellulose) and the matrix also contribute to the polarization. Atomic polarization and electronic presence immediately because it does not affect the value of the dielectric constant with frequency applied. Thus, the dielectric constant of lignocelluloses fiber composites depends on the polarizability of the molecule, namely the interfacial polarization and orientational.[5] From the test results it can be observed that the dielectric constant decreases due to alkali treatment which increases the strength of the base or the low pH of the solution caused the decrease in the dielectric constant due to the polarization orientation of the fibers which are chemically treated. Fibers undergo a reduction of moisture and water absorption capacity due to the reduction of the interaction between the OH- groups of palm sugar fiber with water molecules.[3] Figure 2 shows that the control specimens with powder, the price of dielectric constants is lower than the control specimens with fibers. It was caused by the intact fibers have polar groups cluster more and more dense distance compared with particle shape, but it is less refined powder size and distribution causing uneven presence of voids that prevent polarization mechanism. Composite containing fibers treated with KOH have the lowest dielectric constant among other composites. Processing with NH\textsubscript{3}OH only resulted in changes in the chemical composition of the smaller on the fiber surface treatment compared with NaOH and KOH, as the value of the dielectric constant of the composite without treatment and treated with NH\textsubscript{3}OH showed minimal differences. In the case of processing with NaOH and KOH reacts with OH groups in cellulose natural fibers and produces a change in the chemical structure that reduces the hydrophilic nature and polarity of the fibers and subsequently leads to a reduction in dielectric constant.

Effect of Weight Fraction on Resistivity. At the weight fraction of a larger or more number of fibers in the composite led to increased distribution and density of fibers in the composite. This causes the value of resistivity decreases or conductivity increases after the addition of lignocelluloses fibers. The presence of lignocelluloses fibers increases the moisture content or increasing the amount of polar groups (OH- group) that present in cellulose, is reactive and can conduct electricity. [6] At low fiber fraction, there was less dense fiber distribution so that less facilitating the flow of electric current. At higher fiber loading, fiber population is more tightly to facilitate the flow of electric current. In order to get better conductivity, fiber fillers should be spread evenly, regularly and meeting so that the distance between the fibers is very close to each other, in other words, the conductivity depends on the deployment of fiber in the composite; so in order to get a better conductivity, fiber must be quite a lot, spread evenly and regularly.[7]

Effect of Weight Fraction on Dielectric Constant. Palm sugar fibers are polar and matrix epoxy is non-polar, the incorporation of both in the composite leads to an increase in the number of polar groups in the composite, and this
Effects of alkali treatment and weight fraction

resulted in increased orientational polarization then improved dielectric constant. In addition, the composite of palm sugar fibers-epoxy matrix is heterogeneous and consequently polarization interface also contribute effectively to the improvement of the dielectric constant. As a result of these effects (interface and orientational polarization), the dielectric constant increases with fiber content on the measurement at low frequencies. At this frequency, the complete orientation polarization made possible and produce high dielectric constants.

Conclusions

Based on the above results, the electrical properties of the composite palm sugar fiber-epoxy matrix such as resistivity and dielectric constant depends on the alkali treatment and fiber weight fraction. Treatment with alkaline solutions of different base strengths indicates the stronger the base or greater alkaline reaction then the value of the resistivity of the composites increased while the value of the dielectric constant decreases, it is associated with a reduction in polar groups that can conduct electric current and can lead to polarization effects. Then, an increase in weight fraction of palm sugar fibers in the composite result in a decrease in the value of the resistivity or increase the conductivity and increase of the dielectric constant value, it is associated with an increase in the density of fiber and increased polarization orientation and interface polar groups are present in the lignocellulosic fibers.

References

Received: July 11, 2014