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Abstract 

This article determines the stage of breast cancer with a new method 
using mathematical equation models with physical parameters. To 
determine the stage of breast cancer, a model has been developed by 
the method of Tumor Node Metastasis (TNM) and Scarff-Bloom-
Richardson. In this study, we have used mathematical equation models 
with physical parameters to determine the probability of gray-level 
pair at a certain distance. In a previous research, we managed to 
determine the histological type of breast cancer using the physical 
parameters. The proposed approach has been tested on 15 
mammograms new patients of Dr. Soetomo Hospital, Indonesia. The 
results showed that the use of physical parameters was actually able to 
predict the stage of breast cancer with a sensitivity of 86,67% on the 
footage 55×  cm and %.5=α  

1. Introduction 

Many methods of early detection of breast cancer have been developed 
such as texture coding [1], edge detection [2], adaptive k-means clustering 
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[3], self similar fractal [4], fractal feature [5], neural network [6], Kekre’s [7], 
SVM classifier [8], texture resemblance marker [9], extraction [10], accurate 
method [11], contour description [12], bilateral asymmetry [13], orthogonal 
polynomials model [14], the dual tree complex [15], Gabor features [16], 
fuzzy clustering [17], k-means and fuzzy c-means [18], vector quantization 
technique [19], Kohonen SOM and LVQ network [20], entropy Sallis Q and 
a type II fuzzy [21], foveal method [22] and wavelet [23]. However, these 
methods only detect the presence of microcalcification course and not the 
breast cancer staging. In a previous study, we have succeeded in classifying 
types of breast cancer histology using physical parameters of the sensitivity 
of 86.36% on a 55 ×  cm samples with %5=α  [24]. 

The paper is organized as follows: Section 2 discusses the interaction of 
radiation with breast cancer, Section 3 discusses the physical parameters, 
Section 4 discusses the logistic regression mapping function and Section 5 
discusses multinomial linear regression function as the outcome of the stage 
type. Section 6 discusses the result and discussion and last, conclusions are 
discussed in Section 7. 

2. Radiation Interaction with Breast Cancer 

The intensity of the radiation beam on breast cancer is partly absorbed 
and partly transmitted. The intensity of the transmitted radiation beam of 
density is dependent upon the breast cancer. As the breast density becomes 
greater, the more the intensity of the light is absorbed or the less the intensity 
of the transmitted beam. The less the intensity of the transmitted light, the 
closer the gray-level mammogram films gets to a white color or higher pixel 
intensity values. Relationship intensity of the light transmitted by the density 
of breast cancer can be written as follows: 

,0
L

t eII μ−=  (2.1) 

where LIIt ,,, 0 μ  are the intensity of each beam that is being passed, the 

intensity of initial light, the absorption coefficient and the density of breast 
cancer, respectively. 
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3. Physical Parameters 

Each level of malignancy disease has different patterns of pixel 
intensities. Of these patterns are probabilities pair gray-level at a certain 
distance. Pair of gray-level probability at any distance can be determined by 
lack of uniformity (entropy), sharpness structural variations (contrast), 
structural uniformity (angular second moment), the local homogeneity 
(inverse difference moment), linear dependence (correlation), authenticity 
properties (mean), density (deviation), lack of uniformity of the distribution 
of probability of occurrence gray-level pair at a certain distance (entropy of 

),diffH  structural uniformity of the distribution of probability of occurrence 

gray-level pair at a certain distance (angular second moment of )diffH  and 

the nature of the authenticity of the pair probability distribution of gray-level 
events at a certain distance (mean )diffH  as follows [24, 25]: 
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with 
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where dyy rq ,,  are the gray-level pixel value of unity, the value of the 

second pixel gray-level and the distance between the two pixels with pixels 
unity, respectively. ( )dyyH rq ,,  is a second-order histogram that describes 

the distribution of probability of occurrence of a pair of gray-level. 

4. Logistic Regression Mapping Function 

Review the following probability function: 

( )YPr  and ( ),XfY =  where the dependent variable that is bound to 

free variables { },iX  and iX  are linearly independent with jX  that is 
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∑≠ j jji XaX ,  where Y is output category, e.g., ,0=y  stage 1 category, 

,1=y  stage 2 category and so on, ,ky =  particular category. 

This form is multinomial or multiple linear rate. 

Review of the logistic function (logic) as follows [24]: 
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Note. Use of functional in natural logarithm related to qualitative 
mapping (entropy) to qualitative (stage types of breast cancer), which does 
not satisfy the normal Gaussian, statistically, 
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and ( )XYPr |= 1  as a multinomial logistic regression of statistical model. 

For example { } ,2,1== kkZY  it will be found in all categories 

( )∑ = =|=2
1 ,11k kr XZP  to 
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and because the fulfillment of all categories/stages into force, 

( ) ,11
4

1∑ =
=|=

k kr XZP  

( ) ( ) ( ) ,1111 321 =|=+|=+|= XZPXZPXZP rrr  until 

( ) ( ) ( ),1111 321 XZPXZPXZP rrr =−|=−=|=  

( )
{ } { }

.
1

1
1

111
321 ⎥
⎦

⎤
⎢
⎣

⎡

+
−⎥

⎦

⎤
⎢
⎣

⎡

+
−=|= −− ZZr

ee
XZP  (4.7) 

5. Linear Regression Multinomial Function as an 
Outcome of the Stage Type 

Review the following linear regression [24]: 
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kZ  is the outcome/impact of a number of { },jEntr  

0kZ  is the intersection/intersection of the axis or the initial value of outcome, 

.0kk ZZ =  
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For the tribe 0,MeanHd10 .Bkn1, =+
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jk jkj EntrB1,  is a nuisance parameter/variable-free number { }jEntr  the 

rank of 1 (one) or linear,  

Bkn.MeanHd10 is the correction factor by the number of outcome { }.jEntr  

For example: 
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These are illustrated in Figure 1 as follows: 

 

Figure 1. Linear regression model and logistic regression model. 

6. Results and Discussion 

Figures 2(a), 2(b) and 2(c) are consecutive mammogram pictures of stage 
1, stage 2 and stage 3. 
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Figure 2. (a) Stage 1, (b) Stage 2 and (c) Stage 3. All the mammographic 
images are collected from the data base computer at radiodiagnostic            
Dr. Soetomo Hospital Indonesia, these images of mammographic labelling 
Kodak brand, type 6900 laser imager dryview data prints of mammographic 
films and it is placed in the direct view 975 CR. Images saved in bmp format 
and sampled with a size of 55 × cm. 

Table 1. Range value of physical parameter stage 1, stage 2 and stage 3 

Variable Fisis film Stage 1 Stage 2 Stage 3 

EHD [7] 1.73607-1.94205 1.53297-1.99567 1.47486-1.97046 

EHD [8] 1.75712-1.96550 1.54760-2.03515 1.47486-1.99232 

EHD [9] 1.77505-1.98493 1.55487-2.06837 1.48628-2.01004 

EHD [10] 1.79126-2.00308 1.56675-2.09662 1.49883-2.02729 

ASMHD [1] 0.03226-0.04507 0.01040-0.06264 0.02541-0.05055 

ASMHD [2] 0.02382-0.03552 0.01921-0.09318 0.01996-0.04772 

ASMHD [3] 0.01979-0.03084 0.01885-0.08648 0.01713-0.04533 

ASMHD [4] 0.01727-0.02786 0.01780-0.07929 0.01544-0.04395 

ASMHD [5] 0.01551-0.02572 0.01577-0.07357 0.01418-0.04331 

ASMHD [6] 0.01426-0.02412 0.01420-0.06847 0.01340-0.04119 

ASMHD [7] 0.01333-0.02290 0.01303-0.06259 0.01265-0.04005 

ASMHD [8] 0.01259-0.02191 0.01176-0.05828 0.01198-0.03905 
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ASMHD [9] 0.01200-0.02098 0.01075-0.05382 0.01144-0.03791 

ASMHD [10] 0.01151-0.01994 0.00998-0.04819 0.01091-0.03688 

MHD [1] 9.92311-13.81787 7.03711-22.00450 8.66159-18.50292 

MHD [2] 12.71444-18.85441 8.67398-23.14779 9.19399-23.10747 

MHD [3] 14.71335-22.88359 10.03482-25.84119 9.71770-26.75284 

MHD [4] 16.34673-26.14803 11.44139-28.45701 9.99301-29.55086 

MHD [5] 17.79653-29.10036 12.41866-31.16452 10.23093-32.00988 

MHD [6] 19.04117-31.69811 12.73418-34.88744 10.72127-33.90060 

MHD [7] 20.13923-33.92885 12.95908-38.22411 11.04172-35.78729 

MHD [8] 21.15194-35.91399 13.54083-41.38564 11.29721-37.82326 

MHD [9] 22.10252-37.64858 13.72020-44.66617 11.63253-39.52103 

MHD [10] 23.03941-39.22549 14.14465-47.98476 12.01704-41.35556 

Mode of mathematical equations to determine the stage of breast cancer 
is as follows: 

=:2Z  –893.020 + 195160.164 * ASMHD [2] – 510897.436 * ASMHD [3] 

+ 533083.158 * ASMHD [4] – 269158.613 * ASMHD [5] 

+ 252132.909 * ASMHD [6] – 1440.363 * ASMHD [7] 

– 254114.237 * ASMHD [8] – 272372.401 * ASMHD [9] 

+ 327999.228 * ASMHD [10] + 94.046 * MHD [1]  

– 108.973 * MHD [2] – 1.364 * MHD [3] + 294.227 * MHD [4] 

+ 17.633 * MHD [5] – 2.388 * MHD [6] – 638.598 * MHD [7] 

+ 1341.563 * MHD [8] – 1927.761 * MHD [9] 

+ 995.082 * MHD [10]; 
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=:3Z  –1512.837 + 148397.141 * ASMHD [2] – 348864.647 * ASMHD [3] 

+ 374023.365 * ASMHD [4] + 582434.961 * ASMHD [5] 

– 990621.703 * ASMHD [6] – 1598.515 * ASMHD [7] 

+ 122174.826 * ASMHD [8] – 126994.804 * ASMHD [9] 

+ 241438.444 * ASMHD [10] + 44.331 * MHD [1] 

– 320.941 * MHD [2] – 3.389 * MHD [3] + 1645.629 * MHD [4] 

– 74.639 * MHD [5] – 55.387 * MHD [6] – 4306.505 * MHD [7] 

+ 5360.133 * MHD [8] – 4033.694 * MHD [9]  

+ 1837.766 * MHD [10]; 

Probability stage ( )( );Exp11:2 2Z−+=  

Probability stage ( )( );Exp11:3 3Z−+=  

Probability stage 1 := 1 – Probability stage 2 – Probability stage 3. 

The optimum physical variables to classify breast cancer stage is 
structural uniformity of the distribution of probability of occurrence gray 
level pair at a distance of 2, 3, 4, 5, 6, 7, 8, 9, 10 (angular  second moment of 

)diffH  and the nature of the authenticity of the pair probability distribution 

of gray-level events at a distance of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (mean  ).diffH  

7. Conclusion 

Tests staging breast cancer were done using physical parameters of 15 
new patients’ mammogram from the Dr. Soetomo Hospital Indonesia. There 
are 2 errors and 13 truths resulting in a sensitivity value of 86,67% (13/15) 
on the footage 55 × cm and %.5=α  Hence, staging breast cancer using 
physical parameters indeed improve the performance in diagnosing breast 
cancer staging. The optimum physical parameters for classifying breast 
cancer stage is structural uniformity of the distribution of probability of 
occurrence gray-level pair at a distance of 2, 3, 4, 5, 6, 7, 8, 9, 10 (angular  
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second moment of )diffH  and the nature of the authenticity of the pair 

probability distribution of gray-level events at a distance of 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10 (mean  ).diffH  
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