PERANCANGAN SISTEM INFORMASI MOBILE SALES FORCE AUTOMATION (SFA) PT. ASTRA INTERNASIONAL TBK. – HONDA
Ni Made Dwi Aminta, Agus Muliantara

PENGENALAN POLA BREAST CANCER MENGUNAKAN ALGORITMA NGUYEN WIDROW BACKPROPAGATION
I Gust Ag Indra Arthana, Agus Muliantara

PENERAPAN QUEUE TREE PADA ROUTER MIKROTIK DALAM MANAJEMEN BANDWITH
I Putu Ery Handika dan I Komang Ari Mogi

PERANCANGAN SISTEM INFORMASI KEANEKARAGAMAN HAYATI DI PT. PERTAMINA DEPOT PENGISIAN PESAWAT UDARA (DPPU) NGURAH RAI
I Gusti Putu Devina Putra, I.B Made Mahendra

IMPLEMENTASI SISTEM BACKUP OTOMATIS VIRTUAL PRIVATE SERVER DENGAN CRONTAB
I Putu Eka Suparwita

IMPLEMENTASI SISTEM OPERASI ROUTER MIKROTIK SEBAGAI PROXY SERVER BERBASIS TRANSPARENT PROXY
I Putu Iyasa Pringgadita Pucet, I Made Widhi Wirawan

PURWARUPA APLIKASI MESIN PENCARI REFERENSI
I Putu Sutria Narada, Agus Muliantara, Ida Bagus Dwisasmita

IMPLEMENTASI BANDWIDTH MANAGEMENT PADA PENGALOKASIAN HOTSPOT DI FAKULTAS HUKUM UNIVERSITAS UDAYANA
I Made Yuda Prasetya, I Made Widhi Wirawan, I Dewa Made Bayu Atmaja Darmawan

PERANCANGAN SISTEM TRACER STUDY BERBASIS WEB PADA FAKULTAS PARIWISATA UNIVERSITAS UDAYANA
Luh Sukma Widasari, Ngurah Widyatmaja

PERANCANGAN DAN IMPLEMENTASI APLIKASI KLASIFIKASI PENYAKIT DIABETES DENGAN METODE NAIVE BAYES
Putu Gerhans Prauwira Risnawan, Ngurah Agus Sanjaya ER, I Made Widiartha

IMPLEMENTASI SPLIT DNS DENGAN MENGUNAKAN BIND9 DALAM MEMBANGUN SISTEM CONTENT DELIVERY NETWORK
I Made Yoga Sattwikia Darma, I Made Widhi Wirawan, I Dewa Made Bayu Atmaja Darmawan

PERANCANGAN SISTEM INFORMASI SALES ACTIVITY PT. ASTRA INTERNATIONAL TBK. – HONDA
I Wayan Angga Putama, Ida Bagus Code Dwisasmita

ANALISIS MANAJEMEN BANDWIDTH UNTUK MEMBERIKAN LAYANAN SECARA ADIL TERHADAP PENGGUNA DENGAN MENGUNAKAN METODE ANTRIAN HTB DAN METODE ANTRIAN PCQ PADA MIKROTIK
I Made Bayu Adi Utama, I Dewa Made Bayu Atmaja Darmawan

PENGENALAN WCSRA KARAKTER INDONESIA MENGGUNAKAN HIDDEN MARKOV MODEL
I Wayan Adi Juliawan Pawana

IDENTIFIKASI KEKURANGAN UNSUR HARA PADA TANAMAN JAGUNG DENGAN METODE JARINGAN SARAF TIRUAN LEARNING VECTOR QUANTIZATION
Adinda Prisila Permatahari, Luh Gede Astuti, I Gede Santi Astawa

ANALISA KINERJA ROUTING MENGGUNAKAN ROUTING INFORMATION PROTOCOL (RIP) DAN OPEN SHORTEST PATH FIRST (OSPF)
A.A.Sagung Istri Candra Padmasari
DAFTAR ISI

SUSUNAN DEWAN REDAKSI JELIKU ... i
DAFTAR ISI .. iii
PERANCANGAN SISTEM INFORMASI MOBILE SALES FORCE AUTOMATION (SFA) PT. ASTRA INTERNASIONAL TBK. –HONDA
Ni Made Dwi Arnita, Agus Muliantara... 1
PENGENALAN POLA BREAST CANCER MENGGUNAKAN ALGORITMA NGUYEN WIDROW BACKPROPAGATION
I Gst Ag Indra Arthana, Agus Muliantara .. 11
PENERAPAN QUEUE TREE PADA ROUTER MIKROTIK DALAM MANAJEMEN BANDWITH
I Putu Ery Handika dan I Komang Ari Mogi.. 16
PERANCANGAN SISTEM INFORMASI KEANEKARAGAMAN HAYATI DI PT. PERTAMINA DEPOT PENGISIAN PESAWAT UDARA (DPPU) NGURAH RAI
I Gusti Putu Deviara Putra, I B Made Mahendra.. 25
IMPLEMENTASI SISTEM OPERASI ROUTER MIKROTIK SEBAGAI PROXY SERVER BERBASIS TRANSPARENT PROXY
I Putu Iyasa Pringgagada Pecut, I Made Widhi Wirawan ... 33
PURWARUPA APLIKASI MESIN PENCARI REFERENSI
I Putu Sutria Narada, Agus Muliantara, Ida Bagus Dwidasmana 42
IMPLEMENTASI BANDWIDTH MANAGEMENT PADA PENGALOKASIAN HOTSPOT DI FAKULTAS HUKUM UNIVERSITAS UDAYANA
I Made Yuda Prasetia, I Made Widhi Wirawan, I Dewa Made Bayu Atmaja Darmawan 51
PERANCANGAN SISTEM TRACER STUDY BERBASIS WEB PADA FAKULTAS PARIWISATA UNIVERSITAS UDAYANA
Luh Sukma Widiasari, Ngurah Widyatmaja.. 59
PERANCANGAN DAN IMPLEMENTASI APLIKASI KLASIFIKASI PENYAKIT DIABETES DENGAN METODE NAÏVE BAYES
P Putu Gerhans Prawira Risnawan, Ngurah Agus Sanjaya ER, I Made Widiartha 68
IMPLEMENTASI SPLIT DNS DENGAN MENGGUNAKAN BIND9 DALAM MEMBANGUN SISTEM CONTENT DELIVERY NETWORK
I Made Yoga Sattwika Darma
, I Made Widhi Wirawan, I Dewa Made Bayu Atmaja Darmawan 73
PERANCANGAN SISTEM INFORMASI SALES ACTIVITY PT. ASTRA INTERNATIONAL TBK. - HONDA
I Wayan Angga Pratama, Ida Bagus Gede Dwidasmana ... 78
ANALISIS MANAJEMEN BANDWIDTH UNTUK MEMBERIKAN LAYANAN SECARA ADIL TERHADAP PENGUNGAN DENGAN MENGGUNAKAN METODE ANTRIAN HTB DAN METODE ANTRIAN PCQ PADA MIKROTIK
I Made Bayu Adi Utama, I Dewa Made Bayu Atmaja Darmawan ... 88
PENGENALAN WICARA KARAKTER INDONESIA MENGGUNAKAN HIDDEN MARKOV MODEL

I Wayan Adi Juliawan Pawana ... 96
IDENTIFIKASI KEKURANGAN UNSUR HARA PADA TANAMAN JAGUNG DENGAN
METODE JARINGAN SARAF TIRUAN LEARNING VECTOR QUANTIZATION

Adinda Prisila Permatasari, Luh Gede Astuti, I Gede Santi Astawa .. 101
ANALISA KINERJA ROUTING MENGGUNAKAN ROUTING INFORMATION PROTOCOL
(rip) DAN OPEN SHORTEST PATH FIRST (OSPF)

A.A.Sagung Istri Candra Padmasari .. 1010
IMPLEMENTASI BANDWIDTH MANAGEMENT PADA PENGALOKASIAN HOTSPOT DI FAKULTAS HUKUM UNIVERSITAS UDAYANA

I Made Yuda Prasetia, I Made Widhi Wirawan, I Dewa Made Bayu Atmaja Darmawan
Program Studi Teknik Informatika, Jurusan Ilmu Komputer,
Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Udayana.
Email: yuda.prasetia@cs.unud.ac.id

ABSTRAK

Sesuai dengan hasil pengujian yang telah dilakukan dengan menerapkan HTB (Hierarchy Tocke Bucket) dengan kapasitas limit untuk proses upload 128k dan download 256k dapat berhasil dilakukan limit untuk hotspot, hal tersebut dapat dibuktikan kapasitas bandwidth tidak melebihi dari yang tentukan yaitu proses upload 0,11Mbps dan Download 0,24Mbps.

Kata Kunci: Bandwidth Management, Hotspot, HTB, Tree Queue

ABSTRACT

Network is a a set of communication tools that are connected to each other. Over time computer networks is growing very rapidly. The usage for internet access was really high such as to search for information, study materials and access to social networking or just to chat. Considering the increase of internet usage today, the use of bandwidth is also increasing, for example downloading unnecessary thing. The bandwidth management is needed to optimizing the bandwidth usage. Bandwidth Management is the allocation the bandwidth to support the need or desirability of an Internet network in order to guarantee the quality of service of a network QoS (Quality of Services). In this research a bandwidth management is created in Hotspot Mikrotik at the Faculty of Law, University of Udayana using Queue Tree. Which in this case would be limited upload and download capacity.

In accordance with the results of the testing that has been done by applying the HTB (Hierachy Tocke Bucket) with a capacity limit for the process of uploading and downloading 256k 128k can be done to limit the hotspot, it can be proved does not exceed the bandwidth capacity of which specify that the upload is 0.11 Mbps and Download 0.24 Mbps.

Keyword : Bandwidth Management, Hotspot, HTB, Tree Queue

1. PENDAHULUAN

Dalam menggunakan jasa internet setiap pengguna menginginkan kecepatan akses internet yang maksimal. Kecepatan akses internet tentunya akan berhubungan dengan besarnya kapasitas bandwidth yang tersedia dalam suatu jaringan. Untuk mendapatkan kecepatan akses yang maksimal dan dengan resource bandwidth yang terbatas, maka bandwidth diperlukan pengaturan yang baik untuk menjaga lalu lintas data dalam suatu jaringan komputer agar tidak terjadi kemacetan sebagai akibat dari adanya permintaan akses yang overload dalam jaringan. Berlandaskan pada keinginan-keinginan tersebut, maka upaya-upaya penyempurnaan terus dilakukan oleh berbagai pihak. Dengan memanfaatkan berbagai teknik khususnya dalam manajemen bandwidth pada router/gateway internet. MikroTik RouterOS merupakan salah satu solusi tepat yang dapat digunakan untuk keperluan tersebut.

Dengan berbagai fitur network yang lengkap, canggih dan user friendly dengan winbox yang dimilikinya, sehingga hal ini memberikan kemudahan bagi penggunanya dalam pengelolaan jaringan secara umum dan manajemen bandwidth khususnya. Sehingga pada akhirnya pengaturan bandwidth untuk pengguna internet dapat lebih baik dan lebih optimal pemanfaatannya.

II. TINJAUAN PUSTAKA

1. Mikrotik OS
Mikrotik routerOS adalah perangkat lunak yang bisa menjadikan komputer biasa atau PC menjadi router network/jaringan yang bisa digunakan untuk IP network/jaringan dan wireless. Dimana berfungsi untuk mengatur lalu lintas jaringan.

2. Management Bandwidth
Istilah alokasi/management bandwidth sering dipertukarkan dengan istilah traffic control, yang dapat didefinisikan sebagai pengalokasan yang tepat dari suatu bandwidth untuk mendukung kebutuhan atau keperluan aplikasi atau suatu layanan jaringan. Istilah bandwidth dapat didefinisikan sebagai kapasitas atau daya tampung suatu channel komunikasi (medium komunikasi) untuk dapat dilewati sejumlah traffic informasi atau data dalam satuan waktu tertentu. Umumnya bandwidth dihitung dalam satuan bit, kbit atau bps (byte per second).

3. Winbox

4. HTB (Hierarchy Token Bucket)
TB adalah sebuah sistem untuk mengatur dan mengontrol kapasitas bandwidth. Pada sebuah service provider harus memiliki pengaturan bandwidth yang efisien dan efektif. Untuk mendapatkan hasil tersebut diperlukan sebuah system dan HTB inilah merupakan sistem yang memiliki efisiensi untuk menghasilkan pengaturan bandwidth yang optimum. Secara konseptual, HTB adalah suatu jumlah yang berubah-ubah dari token bucket yang diatur di dalam suatu hirarki. Hirarki merupakan susunan atau langkah bagaimana proses kerja yang diterapkan oleh HTB, dimana susunan langkah hirarki pada HTB dijelaskan pada gambar 1 dan gambar 2.

1. Qdisc: Queuing discipline (merupakan disiplin antrian).
2. Ceil: Digunakan untuk mengatur kecepatan maksimum yang diinginkan untuk membatasi lalu lintas yang ditransmisikan.
3. Rate : Digunakan untuk mengatur kecepatan minimum yang diinginkan untuk membatasi lalu lintas (traffic) data.

4.1 Mekanisme Kerja Hierarchical Token Bucket

Gambar 1. Ilustrasi HTB (Hierarchy Token Bucket)

HTB (Hierarchy Token Bucket) merupakan salah satu teknik antrian yang memiliki tujuan untuk menerapkan link sharing. Dalam konsep link sharing, jika suatu kelas meminta kurang dari jumlah Service yang telah ditetapkan untuknya, sisa bandwidth akan di distribusikan ke kelas - kelas lain yang meminta service. HTB menggunakan TBF sebagai estimator yang sangat mudah diimplementasikan. Estimator ini hanya menggunakan rate, sebagai akibatnya seorang administrator hanya perlu mengestet rate yang akan di berikan ke suatu kelas.

Gambar 2. Skema Antian HTB

Pada HTB gambar 2 memiliki parameter ceil sehingga kelas akan selalu mendapatkan bandwidth di antara beraserate dan nilai ceil ratenya. Parameter ini dianggap sebagai estimator kedua, sehingga setiap kelas dapat meminjam bandwidth selama bandwidth total yang diperoleh memiliki nilai di bawah nilai ceil. Jadi dalam system antrian pada HTB jika salah satu class membutuhkan sejumlah bandwidth yang dibatasi maka sisa dibandwith akan didistribusikan ke kelas lainnya. Sebagai contoh jika bandwidth yang ditentukan 512k sedangkan bandwidth yang tersedia 1 MB maka sisa bandwidth akan disitribusikan ke kelas yang lainnya. Jika bandwidth yang disitribusikan masih tersisa dan tidak mendapatkan class maka hal yang terjadi sisa bandwidth akan tersimpan pada bandwidth induk. Karena pada dasarnya mekanisme kerja dari HTB yaitu pembagian secara hirarki dengan system antrian.

4.2 Tree Queue

Queue Tree berfungsi untuk melimit bandwidth pada mikrotik yang mempunyai 2 koneksi internet karna packet marknya lebih berfungsi daripada di Simple Queue. Digunakan untuk membatasi satu arah koneksi saja baik itu download maupun upload.

Gambar 3. Teknik Antrian Queue Tree

Proses algoritma teknik antrian queue tree adalah sebagai berikut:
1. Mark Packet
Mark packet bertugas untuk menandai paket data yang akan diproses ke antrian.
2. Firewall
Firewall bertugas untuk menyelekasi paket sesuai dengan klasifikasi kelasnya.
3. Mangle
Mangle bertugas untuk pembatasan bandwidth

4.3 PCQ
Teknik Pembagi bandwidth dengan Per Connection Queue (PCQ) prinsipnya menggunakan metode antrian untuk menyamakan bandwidth yang dipakai pada multiple client. Didalam mikrotik PCQ sudah terinstal default dan merupakan program untuk mengatur traffic jaringan Quality of Service (QoS). Untuk memecahkan beberapa imperfectness SFQ, Per Connection Queueing (PCQ) diciptakan. Ini adalah satu-satunya antrian tanpa kelas jenis yang dapat melakukan pembatasan. Ini adalah versi perbaikan dari SFQ tanpa stohastic nya alam.
PCQ juga menciptakan subqueues, mengenai parameter pcq-classifier.

III. PERANCANGAN SISTEM

a. Perancangan Skema Sistem

Gambar 4. Skema Sistem
Pada gambar 4 merupakan skema system akan dirancang, dengan menerapkan proses untuk limit upload 128k dan download 256k.

IV. IMPLEMENTASI

4.1 Pengaturan HTB (Hierarchical Token Bucket)

Gambar 5. Mikrotik Winbox
Dalam pengaturan Hierarchical Token Bucket (HTB) Queue tree adalah dengan login ke jaringan fakultas hukum, dan pengaturan dengan aplikasi winbox.

Gambar 6. Setting Mangle Rule Mikrotik
Setting Mangle Mikrotik merupakan salah satu cara utama yang dilakukan untuk managemet bandwidth sebelum ke tahap selanjutnya, yang pada hal ini dilakukan dengan queue tree. untuk setting mangle dapat diakses dari menu IP-Firewall pada tab mangle kemudian pilih tanda + untuk melalui setting mangle.

Gambar 7. Setting Mangle Rule Action
Pada gambar 7 merupakan setting mangle selanjutnya dengan Tab action bertujuan menandai bahwa hotspot yang dilakukan limit. Action = mark Connection, New Connection mark= hotspot dan centangkan passthrough agar setting tersebut dapat digunakan untuk settingan berikutnya.
Pada gambar 8 memilih General mengisikan Chan = forward, Connection Mark = hotspot lalu apply dan langsung klik OK. Bertujuan membuat mangle baru dengan mark connection Hotspot yang telah dibuat sebelumnya.

4.3 Setting Queues Types Mikrotik
Merupakan hal yang utama karena untuk pengaturan proses Upload dan Download yang akan dilakukan untuk settingan Queue Tree selanjutnya.

Pada gambar 10 merupakan Setting Queue Types, yang dimana tujuan dari setting ini menentukan atau memberi nama queue yang akan digunakan untuk melimit.

Gambar 11. Setting Queue Type
Pada gambar 11 menandai settingan untuk upload dan download dengan metode pcq pada queue tree.

Gambar 12. Setting Queue Type Download
Pada gambar 12 menjelaskan bagaimana langkah yang dilakukan untuk Queue Type Download. Pengaturan Type Name = down, Kind= pcq , Rate=0, Limit=50, Total Limit=2000, Dist.Address harus dicentang karena pemberi tanda yang membedakan antara Upload dan Download.

Gambar 13. Setting Queue Type Upload
Pada gambar 13 merupakan proses Upload, dilakukan pengaturan pada Type name= up, Kind=pcq, Rate=0, Limit=50, Total Limit= 2000, Src.Address harus diberikan tanda karena yang membedakan antara Upload dan download untuk settingan Queue Type.

4.4 Setting Queue Tree

Setting Queue Tree adalah hal utama dilakukan untuk pembatasan kapasitas bandwidth upload dan Hotspot yang berikan untuk setiap pengguna hotspot di Fakultas Hukum Universitas Udayana.

Gambar 15. Setting Upload dan Download Pada Queue Tree

V. EVALUASI

Proses evaluasi merupakan hasil pengujian yang telah dilakukan untuk bandwidth management hotspot di Fakultas Hukum Universitas Udayana

5.1 Hasil Penguji

Hasil pengujian management bandwidth menggunakan IITB menggunakan Speedtest dengan menerapkan 15 percobaan. Hal tersebut dilakukan apakah proses limit dengan menerapkan IITB dapat melakukan proses limit terhadap hotspot di Fakultas Hukum Universitas Udayana. Untuk 15 percobaan didapatkan hasil pada tabel 1 hasil pengujian HTB.

Gambar 16. Hasil Penguji Hotspot

Pada gambar 16 merupakan hasil pengujian yang dilakukan, terlihat jelas bahwa berhasil dilakukan limit untuk hotspot dengan menerapkan total limit Upload=128 bits/s dan download =256 bits/s

<table>
<thead>
<tr>
<th>NO</th>
<th>MANAGEMENT</th>
<th>UPLOAD 128k</th>
<th>DOWNLOAD</th>
<th>Upload</th>
<th>Download</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel 1. Hasil Penguji HTB
<table>
<thead>
<tr>
<th>BANDWIDTH</th>
<th>DENGAN HTB</th>
<th>256k DENGAN HTB</th>
<th>128k TANPA HTB</th>
<th>256k TANPA HTB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pengujian 1</td>
<td>0.11 Mbps</td>
<td>0.24 Mbps</td>
<td>2.91 Mbps</td>
<td>3.66 Mbps</td>
</tr>
<tr>
<td>Pengujian 2</td>
<td>0.058 Mbps</td>
<td>0.219 Mbps</td>
<td>1.79 Mbps</td>
<td>3.81 Mbps</td>
</tr>
<tr>
<td>Pengujian 3</td>
<td>0.062 Mbps</td>
<td>0.235 Mbps</td>
<td>1.91 Mbps</td>
<td>3.92 Mbps</td>
</tr>
<tr>
<td>Pengujian 4</td>
<td>0.052 Mbps</td>
<td>0.237 Mbps</td>
<td>1.75 Mbps</td>
<td>3.73 Mbps</td>
</tr>
<tr>
<td>Pengujian 5</td>
<td>0.106 Mbps</td>
<td>0.236 Mbps</td>
<td>1.57 Mbps</td>
<td>3.61 Mbps</td>
</tr>
<tr>
<td>Pengujian 6</td>
<td>0.108 Mbps</td>
<td>0.236 Mbps</td>
<td>1.64 Mbps</td>
<td>3.72 Mbps</td>
</tr>
<tr>
<td>Pengujian 7</td>
<td>0.061 Mbps</td>
<td>0.231 Mbps</td>
<td>1.92 Mbps</td>
<td>3.63 Mbps</td>
</tr>
<tr>
<td>Pengujian 8</td>
<td>0.118 Mbps</td>
<td>0.207 Mbps</td>
<td>1.60 Mbps</td>
<td>3.52 Mbps</td>
</tr>
<tr>
<td>Pengujian 9</td>
<td>0.111 Mbps</td>
<td>0.231 Mbps</td>
<td>1.97 Mbps</td>
<td>3.92 Mbps</td>
</tr>
<tr>
<td>Pengujian 10</td>
<td>0.093 Mbps</td>
<td>0.207 Mbps</td>
<td>1.67 Mbps</td>
<td>3.72 Mbps</td>
</tr>
<tr>
<td>Pengujian 11</td>
<td>0.070 Mbps</td>
<td>0.231 Mbps</td>
<td>1.80 Mbps</td>
<td>3.75 Mbps</td>
</tr>
<tr>
<td>Pengujian 12</td>
<td>0.119 Mbps</td>
<td>0.218 Mbps</td>
<td>1.66 Mbps</td>
<td>3.54 Mbps</td>
</tr>
<tr>
<td>Pengujian 13</td>
<td>0.082 Mbps</td>
<td>0.243 Mbps</td>
<td>1.89 Mbps</td>
<td>3.56 Mbps</td>
</tr>
<tr>
<td>Pengujian 14</td>
<td>0.113 Mbps</td>
<td>0.234 Mbps</td>
<td>1.65 Mbps</td>
<td>3.70 Mbps</td>
</tr>
<tr>
<td>Pengujian 15</td>
<td>0.106 Mbps</td>
<td>0.214 Mbps</td>
<td>1.71 Mbps</td>
<td>3.81 Mbps</td>
</tr>
</tbody>
</table>

Gambar 17. Percobaan Speedtest dengan HTB

Pada gambar 17 dilakukan percobaan menggunakan Speedtest dengan HTB (Hierarchy Tocke Bucket) dengan limit Upload = 128k dan Download limit=256k dalam hal ini berhasil dilakukan dengan total Download=0.24Mbps dan Upload=0.11Mbps. Jadi tidak melewat dari kapasitas yang ditentukan. Pada gambar 18 dilakukan percobaan tanpa HTB pada proses upload dan download dapat berjalan sesuai dengan yang ditentukan.

Tabel 1 merupakan nilai dari pengujian yang dilakukan sebanyak 15 kali percobaan pada SpeedTest dengan menerapkan proses upload dan download

Dari Tabel 1, dapat dilihat bahwa management bandwidth menggunakan HTB berhasil diterapkan. Hasil diatas menunjukan untuk proses upload dan download sesuai dengan kapasitas bandwidth yang ditentukan yaitu 128k upload dan download 256k untuk 15 kali percobaan berhasil dilakukan karena bandwidth yang dapat pada saat percobaan tidak melebihi dari kapasitas bandwidth yang ditentukan yaitu 0.11Mbps untuk upload dan 0.24 Mbps untuk download.

Gambar 18. Percobaan Speedtest Tanpa HTB

VI. PENUTUP

Kesimpulan yang dapat ditarik dari penelitian ini adalah:

1. Dengan management bandwidth menggunakan HTB dapat mengatur besar kecilmnya bandwidth yang di perlukan sehingga memberikan hasil yang baik.

2. Dari alokasi bandwith yang diberikan untuk proses upload 128k dan download 256k dengan menerapkan HTB dapat berjalan dengan tepat pada pengaloksian bandwith hotspot pada Fakultas Hukum Universitas Udayana.
3. Pembagian bandwidth untuk hotspot menjadi teratur dan jika client memakai melebihi dari kapasitas bandwidth yang ditentukan tidak bisa mendapatkan hak ases melebihi dari yang ditentukan, sehingga bandiwdth yang ada dapat manage dengan baik pada Fakultas Hukum Universitas Udayana.

DAFTAR PUSTAKA

